skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Humphreys, Eugene"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The magmatic response above subducting ocean lithosphere can range from weak to vigorous and from a narrow zone to widely distributed. The small and young Cascade Arc, riding on the margin of the tectonically active North American plate, has expressed nearly this entire range of volcanic activity. This allows an unusually good examination of arc initiation and early growth. We review the tectonic controls of Cascade-related magmatism from its inception to the present, with new considerations on the influences of tectonic stress and strain on volcanic activity. The Cascade Arc was created after accretion of the Siletzia oceanic plateau at ~ 50 Ma ended a period of flat-slab subduction. This (1) initiated dipping-slab subduction beneath most of the northern arc (beneath Washington and Oregon) and (2) enabled the more southerly subducting flat slab (beneath Nevada) to roll back toward California. As the abandoned flat slab fragmented and foundered beneath Oregon and Washington, vigorous extension and volcanism ensued throughout the northwest USA; in Nevada the subducting flat slab rolled back toward California. Early signs of the Cascade Arc were evident by ~ 45 Ma and the ancestral Cascade Arc was well established by ~ 35 Ma. Thus, from ~ 55–35 Ma subduction-related magmatism evolved from nearly amagmatic to regional flare-up to a clearly established volcanic arc in two different tectonic settings. The modern Cascades structure initiated ~ 7 Ma when a change in Pacific plate motion caused partial entrainment of the Sierra Nevada/Klamath block. This block pushes north and west on the Oregon Coast Ranges block, breaking the arc into three segments: a southern extensional arc, a central transitional arc, and a northern compressional arc. Extension enhances mafic volcanism in the southern arc, promoting basalt decompression melts from depleted mantle (low-K tholeiites) that are subequal in volume to subduction fluxed calcalkaline basalts. Compression restricts volcanic activity in the north; volcanism is dominantly silicic and intra-plate-like basalts cluster close to the main arc volcanoes. The transitional central arc accommodates dextral shear deformation, resulting in a wide volcanic arc with distributed basaltic vents of diverse affinities and no clear arc axis. 
    more » « less
  2. Deep canyons along the Salmon, Snake, and Clearwater rivers in central Idaho, USA suggest long-lasting transient incision, but the timing and drivers of this incision are not well understood. The perturbation of the Yellowstone hotspot, eruption of flood basalts, and drainage of Lake Idaho all occurred within or near to this region, but the relationship among these events and incision is unclear. Here, we utilized in situ 10Be cosmogenic radionuclide concentrations for 46 samples (17 new) of fluvial sediment across the region to quantify erosion rates, calibrate stream power models, and estimate incision timing. We estimate that transient incision along the Salmon River began prior to ca. 10 Ma. However, canyon age decreases to ca. 5 Ma or earlier farther to the north. For a group of tributaries underlain by basalt, we use the age of the basalt to estimate that local transient incision began between ca. 11.5 and 5 Ma. Based on these timing constraints, the canyons along the Salmon and Clearwater rivers predate the drainage of Lake Idaho. We argue that canyon incision was triggered by events related to the Yellowstone hotspot (e.g., basalt lava damming, subsidence of the Columbia Basin, reactivation of faults, and/or lower crustal flow). Furthermore, our models suggest basalt may be more erodible than the other rock types we study. We show that lithology has a significant influence on fluvial erosion and assumptions regarding river incision model parameters significantly influence results. Finally, this study highlights how geodynamic processes can exert a significant influence on landscape evolution. 
    more » « less
  3. null (Ed.)
    SUMMARY Evidence from seismology, geology and geodynamic studies suggests that regional-scale lower crustal flow occurs in many tectonic settings. Pressure gradients caused by mantle processes and crustal density heterogeneity can provide driving force for lower crustal flow. Numerically modelling such flow can be computationally expensive. However, by exploiting symmetry in the physical system, it is possible to represent the vertical component of flow in terms of its lateral components, thereby reducing the problem’s spatial dimension by one. Here, we present a mathematical formulation for flow in a viscous channel below an elastic upper plate, which is optimized for solution by common numerical methods. Our formulation drastically reduces the computational load required to simulate lower crustal flow over large areas and long timescales. We apply this model to two example problems, with and without an elastic upper plate, identifying combinations of parameters that are capable of generating measurable geologic uplift. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Buoyancy anomalies within Earth’s mantle create large convective currents that are thought to control the evolution of the lithosphere. While tectonic plate motions provide evidence for this relation, the mechanism by which mantle processes influence near-surface tectonics remains elusive. Here, we present an azimuthal anisotropy model for the Pacific Northwest crust that strongly correlates with high-velocity structures in the underlying mantle but shows no association with the regional mantle flow field. We suggest that the crustal anisotropy is decoupled from horizontal basal tractions and, instead, created by upper mantle vertical loading, which generates pressure gradients that drive channelized flow in the mid-lower crust. We then demonstrate the interplay between mantle heterogeneities and lithosphere dynamics by predicting the viscous crustal flow that is driven by local buoyancy sources within the upper mantle. Our findings reveal how mantle vertical load distribution can actively control crustal deformation on a scale of several hundred kilometers. 
    more » « less